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TECHNICAL NOTE 3009

VELOCITY FOTENTIAL AND AIR FORCES

ASSOCIATED WITH A TRI&NGULAR WING IN supersonic FLow,

WITH SUBSONIC LEADING EIX3ES,AND DEFORMING HARMONICALLY

ACCORDING TO A GENERAL QUADRATIC EQLU(TION

By Charles E. Watkins and Julian H. Berman

The veloci~ potential for a triangular wing with
edges experiencing harmonic deformations in supersonic
herein: The oscillations considered are such that the
distortion of the wi~ can be represented by a general

subsonic leading
flow is treated
amplitude of

-tic expres.
sion for a surface. The veloci~ potentisl is obtained in the form of
a power series in terms of the frequency of oscillation. Although only
terms appropriate for expressing the ~otential.to the third power of the
frequency are presented, additional terms my be obtained if they are
desired. The material constitutes an extension of work given in NACA
Report 1099.

INTRODUCTION

Designers of supersonic aircraft are leaning more
the use of triangular plan forms for wings and control
order to obtain information concerning the aeroelastic
such wings, knowledge is needed of the air forces that

—

and more toward
surfaces. h
properties of
may act on them.

In flutter calculations for wings ~~hosedeformation& can be calcu-
lated satisfactorilyby simple-beam theory, the use of aerodynamic
coefficientsbased on harmonic pitching and translation of representa-
tive sections of nondistorting, or rigid, wings has proved reasonably
satisfactory. Simple-beam theory, however, does not as readily apply
to trimgular w5mgs or to swept wings of small aspect ratio and for a
structural or a flutter analysis of these wings recourse must be had
to a more appropriate theory. The structural analysis would define
the structural defomntion~ or the natural modes of the wing, and the
flutter analysis would involve the use of aerodynamic coefficients
related to these structural deformations or modes.

.. .——.—.—— _ _— — .— — .—
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In references 1 and 2 use is made of classical plate theory to
develop a method for calculating stresses and deformations of thin,
homogeneous, cantilemr wings of arbitrary plan form. Results of this
method when applied to a triangular plan form indicate that aerodynamic
coefficients associated with sinusoidal distortions including defomna-
tions of the second degree in bending and canibermight be useful in
flutter analyses of triangular wings, particularly if a modal-analysis
approach is used.

In references 3 and 4 aerodymsmic forces and moments on rigid tri-
angular wings &rmonicaUy oscillating in pitch and in vertical transla-
tion in supersonic flow are derived by a method of expanding the associ-
ated veloci~ potentials in terms of the frequency of oscillation. This
method.of expansion can also be used to derive the potentials associated
with harmonically distorting wings, provided the form of distortion is
known. This method, of course, applies to triangular wings with both
supersonic and subsonic leading edges, but only the subsonic-leading-edge
case, which is theoretically the more difficult one, is treated herein.

The main purpose of the present paper is, therefore, to obtain the
expanded veloci~ potential for a triangular wing with subsonic leading
edges undergoing general second-degree forms of harmonic distortion in
‘both spamise and chordwise directions and to present the first few
terms of the expansion. Such a potential canbe mde to yield not only
flutter coefficients for a distorting triangular wing but also certain
steady-state and the-dependent stability derivatives.

For triangular wings with supersonic leading edges the treatment
is a straightforward procedure, since the boundary-value problem for
the velocilzypotential.in this case can be satisfied, as shown in”refer-
ence ~, by simple distributions of sources tith local strength propor-
tional to 10~1 downwash. Although this case is not directly dealt with
herein, the sonic case,” or the case where the Mach lines from the
vertex of the triangular wing coincide with the wing leading edges,
which can be considered as belonging to either the case of subsonic or
supersonic leading edges, is used as a check, in the limiting case, on
the results presented herein.

It is of interest to note that the circular plan form in incom-
pressible flow has been treated for the same forms of harmonic distor-
tions considered herein (ref. 6). A useful byproduct of such treat-
ments is that they furnish means by which various strip-theory approaches
for obtaining aerodynamic forces and mments for a defoiming wing, as
commonly used in flutter analyses, may be evaluated.
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A,B,C,D,E,F

}

Ai,Bi,Ci,Di,Ei,Fi

xi,E@i,Di,Ei,F~

a,b,c,d,e,f

ai)bi,ci,di,ei,fi

}

ai’,bi!,ci’,di’,ei’,fi’

ai’’,b~’’,c,di,,ei’,fi”’,fi”

2b

c

F’jE’

G.l&lsn
k

M

R

r

t

v

W(x,y,t)

constants defined in eqpation (4)

constants depending on PO defined in”appendix

coefficients used in equation (3) to define
displacement of wing

constants depending on ~ and M

constants depending on PO

functions of

root chord of

ii), X, and M

wing

velocity of sound

complete elliptic integrals of first and
second kinds, respectively, with modulus

m

doublet distribution functions

reduced frequency, IX@

free-stream Mach number, v/c

local pressure difference

distsace, J(X. &- @(y- ~)z-pzzz

region of integration (see fig. 1)

time

free-stream velocity

vertical velocity at surface of wing

constants associated with doublet distribution
functions depending on ~ and p
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X,y>!z

%&,Y,t)

U3

z =@iD/v&’

rectan@Lar coordinates attached to wing
moving in negative x-direction

sinusoidal displacement of a point on wing

tangent of half-apex &ngle of triangular

rectangular coordinates used to represent
space location of doublets in ~-plane

densi~

disturbance-veloci~ potential

freqiency of oscillations

ANALYSIS

The Boundary-Value

The differential eqyatioxi,referred

Problem

to a rectangular coordinate
system moving forward at uniform speed V in the negative x-direction,
that must be satisfiedby the velocity potential @ is

(1)

The main governing boundary condition, that of tangential flow at the
wing surface, is

(2)

.. . .. .
—.. . —
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where W(x,y,t) and ~(xjy, t) represent, respectively, the vertical
velocity (or downwash) and vertical displacement of any point (x,Y,z)
of the wing. Let the amplitude of vertical displacement of the wingbe
determinedly a general second-degree equation in. x and Y; then the
displacant-of tipoint of
expressed as

the krmnicallly oscillating’&gnkybe

+b#+cxy+dx+ey+f) (3)

whbre the coefficients a, b, c, . . . maybe considered as complex
quantities in order to permit the inclusion of phase differences betweeq
the different components of the displacement. Ry substituting the
expression for Z& of equation (3) into equatio~ (2), an expression
for the downwash is obtained which may be written as

uwz z+
=W(x,y,t)

The comnonly used Mqch mkber relation “~s -l ‘S bemtitroducea
into the coefficients of the y-teh in equation (k) for convenience id
the subsequent analysiq. The coefficients A, B, C, . . . are related
to the coefficients a, b, c, . . . in equation (3) in the following
manner:

A ‘ha C=F Vc+ime
E=

P

F

Of course, for some ~oses, it”maybe more logical to
prescribed downwash or vertical velocity rather than a
defamation.

start with a
prescribed

As is usual in dealing with linearized aerodynamic problems,’the
velocity is conveniently expressed as a sum of sepmte effects”asso-
ciated with the ~fferent terms of the downwash expression,’equation (4),
namely

..— — —.-— - —.———— —..— —
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(5)

With the potential expressed in this form attention may be directed to
the derivation of these subsidiary potentials @Aj ~, and so forth,

individually.

Derivation of Velocity Potential @

Method of solution.- The boundary-value problem for each of the
subsidiary potentials in equation (5) can be satisfied by the method
discussed in reference 4 of expanding the veloci~ potential to any

given power v of the frequency parsmeter ~ = l&o/V&. The procedure
for obtahing any one of these potentials is essentially the same as
that for obtaining any other. It will therefore suffice to discuss the
derivation of only one subsidiary potential, say @A. The observations,

pertain@ to pulsating doublets, tie in the following paragraph may be
helpful in the subsequent outline and discussion of the derivation.

W@n the potential of a doublet that is pulsating with frequency u
and moving at a uniform speed V is expanded in terms of u, certain
terms of the expansion ue found to contain as a factor the so-called

steady-state doublet potential z/R3 (hereinafterreferred to as sin-

- terms)> whereas au other terms conta~ factors Of the me

(WM) 2UI-2m211F5 ~ ~ 2 (hereinafterreferred to as nonsingular terms).
Of these terms,’only the singular ones contribute directly to the poten-
tial for the airfoil; nevertheless, both singular and nonsingular terms
are, in general, required to satisfy the differential equation, eq&
tion (l), to a given power of Ei. Furthermore, when these expanded
potentials are employed in satisfying the bounda~ conditions, the non-
singular terms give rise to downwash that, as indicated by the fac-

tor (i5/M)~-2, is of higher degree in. G than the downwash arising
from the singular terms, an observation that provided a key to the step-
by-step procedure adopted in reference 4.

In this procedure the singular terms can be grouped and weighted
so that they alone satisfy the specified downwash conditions. At the
same time the downwash arising from the nonsingular terms is to be
cmceled to the reqtied power of ~ by the introduction of other
doublet potentials in order to preserve the do~wash cofitio~ sat- .
isfiedby”the singular terms. It is through this canceling process
that the nonsingular terms give rise, indirectly, to any contributions
to the potential for the airfoil.

——. .——. — . ..— -————— —-—
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The distribution functiong.- In accordance with the preceding dis-
cussion, the potential under discussion can conveniently be considered
as a sum, namely

where ~1 is so treated that the singular terms contained therein_alone

c& be made to satisfy the boundary conditions and the terms ~1, 71, . . .

T

“me successively re ed to cancel the downwash arising from the non-
singular terms of 1. The term @l, which may be considered-as a

summation of weighted doublets expanded to the vth power of ~ and
integrated over the appropriate portion r (see fig. 1) of the wing
p@n fo”km,may be written as

L

2V+3+(-l)V -1

= Aem & ~.%n(xjy)
n=O

where

(7)

R ‘((x - 5)2- f32(Y - TI)2- @+2

and

(8)

— —
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The functions
that are
brackets
singular
downwash

to be
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Gn(~)V) represent weighttig or distribution functibns
determined so that the first set of integrals in the

in equation (7) (which, as may be noted, employ as kernels the
terms of the expanded doublet potential) satisfi the prescribed
condition (see ref. 4 for a more detailed discussion), namely

Corresponding

(lo)

-=
expressions for @l, #1, . . . may be written as follows:

L

2V-1+(-l)V
—

r

%ll~+%(%Y)

r

L

2V-5+(-l)V

(u)

(12)

_ .—
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where the =~ctions ~(tj,~), ~n(~,~)j . . . are to be determined so

that $1, fall,. . . yield a downwash that will.cmcel the downwash

arising from the second set of integrals
tion (7), which employ nonsingular terms

Since the following indentity holds

v-

in the equation for $$, eqqa-
as kernek.

(see eq. (13) of ref. 4),

1
n=o

it follows that the iptegral equatio~ which determine successively
the distribution functions &, ~, ~, . . . (n =0, 1, 2, 3, . . .)
so tht the CORditiOn Of &gential flOW fOr @A iS satisfied are as
follows:

(15)

These integral equations may be solved by the method discussed in the
appendix of reference 4 where, in view of integration difficulties, it
is found necessary to consider not ody the downwash that is to be
satisfied but also the derivations of the downwash. ThiS method,
though simple in principle, is rather lengthy to apply; consequently,
only the results of the solutions will be given herein. Furthermore,
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the potentials wilIlhereinafter he restricted to terms up to the third
power of = (that is, v = 3). To this power of G the distribution—
functions Fn, eqpation (15), are not required.

Expressions for @ and ~ are found to be as follows:
.

L

?

The coefficients Ai and xi in these equations are functions of

Po = PA only, where A is the tangent of the half-apex angle of the
triangle (see fig. 1). These coefficients arise in the process of
solving the integral equations and are defined by systems of linesr
algebraic equations which are given in the appendix..

The integral eqya.tionsfor the distribution functions associated
with ~, @C, . . ., equation (5), are of the same general form as

those associated with @A. The main difference is that the term on

the right side of equation (13) is replaced by the term appropriate to
the downwash under considemtion. The solutions yield the fol.lowing
distribution functions:

—. ——
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G2 =

[
P7E C3 + C4

,>

.
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for @D:

r

—

f?3+54

for &:

% = PV(EO $%)
! \

—

G3
(

= pq E4 + E5

L

—

(19)

(m)
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and, finally, for ~:

% =“(FOJ-)

—

G2 =

[

F2 + F3 9?-]
(21)

d

The coefficients Bi, ~i, Ci, Fi, . . . are tictions of ,pO = ~~.
They are defined by linear s~taneous eqyations given in the appendix
following those defining Ai, Ai.

Expressions for the potential.- With the use of the distribution
functions, the potentials can be written by inspection and comparison.
For example, from equations (7) and (n) the expression fOr #A in

terms of ~ and ~ is

$fA= Aetit 2 a~x%n(xjy) + Aeiutl~x —.a~~%n(xjY) (22)
n=O n=O 2M2

—.- ———
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me potentials @B, @cj . . . are represented by similar expressions.

After tekms have been conibinedwith respect to ~, the subsidia~ poten.
tials to the third power of G can be written in the following forms: .

—

fi2(b~x4+ b5x2~’y2 + b@4~) + @(b7x5 + b~x3~%2 + b@4y4j (24)

$/C.

%)=

$$=

h=

@(c++ + c&f3’y’ +

J

- fi(clx’+ C’p’y’) - E’(C3X3 + C4XFY’)+

(’5)

Detit ~~~x - iZE@1x2 + d2~2y2) - &@3x3 + d4x@2y2) +

ii@(~X4 + d6x2f3%2 + ~p4Y4)] (26)

1 (’7) ,=3 (e4x3 + e5@%2)

m~o - fif,x - $(f’x’ + f3B’Y’) +
Fei~t h2x2

.

iG3(f4x3 + ffi’Y2jJ (28)

—— ... ._ -.
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In these eqpations ai, bi, . . . are linear combinations of

Ai, ~i, Bi, & . . . and can be further expressed as

%“ai=ai’+—
M?

bi”
bi =bi’+—

M2

. . . . .

Expressions for the quantities ai’, ai”, hi’, hi”, . . . are given in

the appendix in terms of the quantities Aij ~i~ Bij ~i, . . . . In

addition, values for these quantities for particular values of PO

throughout the range < 1 are given in table I, and, for con-Ospo=

venience in interpolation, they are shown plotted in figure 2. Thusj
for a given triangular wing and a given ~ch nuuiber,such that

P02 = j32A2$1, the coefficients ai, bi, . . . fi in equations (23)

to (28) canbe assigned their numerical values with the use of table I
and figure 2.

It maybe noted from the boundary condition, equation (4.),that
the subsidiary potentials ~, ~, and ~ are associated with motions

of rigid wings; and that the potentials ~ and ~, equations (26)

and (28), could be obtained tirectly from reference 4 by comparison
with the potentials denoted thereinby @~ and da, respectively. Also

the parameter eO in equation (27) a~ees, as it should, with the param-

eter associated with constant rolling motion of a triangular wing (see,
for example, ref. 7).

The sonic case.- At”~A=l or A= l/~j which is the condition
at which the lkch lines from the apex of the triangle coincide with the
leading edges of the triangle, equations (23) to (28) reduce, respectively,
to

“

—— —-—— ————--
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{

2 (up + p%) - ~ (17X3 - 5XI%F) -
G

29M2)~ - (14 + l-~2)X2~2y2 - (3 - 4MQ)#Yq +

id” k759 + 4olM2)x5
155925M2

- (858 + 137M2)X3B2y2 +

1(99 + 36M2)XB&]

2Bv4i-
J31-c

{

etit &(x2 + llp2y2) - ~(x3 + 3XP2Y2)-
105

@ E33 + 23M2)X5 + (66 -
31.185M2

(99 - 60M2)XPW] }

146+ ~)l+M2x3- 1

4i#
x#y2 + [66 + 14M2)& -

315M2 51975M2

(77- 17M2)x2pv + (U - 1}6M2)B4Y4

(30)

(31)

.,

.

.

— _—— .————-— -. —
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r
2D l’-

!3Yt

(63 - 3M2)X2B2Y2+ (9 - 4M2)$%j}

{
--–-~ [7+5@.2-

2EY~ew 2 Zzmx
pYt 3 15

1}] s~9 + M2)x3 - (9 - 4$)w?y2(7 - 4M2)i3%2 +

(5 - m2)P2Y2]+ ~[7 + 3M2)x3 - (7 - m2)xp2Y21}

(32)

(33)

(34)

Eauations (29) to (~) have also been obtained by integratiu the
expand~d potentiaii of a~ro~riate sources over the region occupied by
the wing for this case of PA = 1. They therefore serve as a check on
the results given in equations (23) to (28).

Introduction of the reduced-frequency parameter into the expressions
for the potentials.- In applications it is usually desirable to refer all
lengths to some convenient reference length on the wing and to introduce
a reduced-frequencyparameter. For this reason it may be desirable to
write the potentials in a slightly modified form. If, in the present

, case, the root chord 2b is chosen as a reference length and the varia-
bles x -d y in the potentials are employed in a new sense to mean
that they are referred to this length, the expressions for the potentials

. — ———— —p
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cam be written in
as follows:

@A ‘~(hb2A)efit

@k2
~(a4x4 +

NACA TN 3~9

terms of the reduced-frequency parameter k = &/v .

(35)

[

@B =2b(4b2B)etit ~A~2bOx2+b1p2y2 - ‘&(b~3 + b~$2y2) -

P2

4&k2
—(b4~ +b5x~2y2 + b@&)+
p4

(36) d

@c = 2b(4b2C)ye‘it -~ - *(C..2 + C2B2,2) -

14$f(cy3 + .4X$%2) + 8y(c5x4 + C6X%W + c7F#Y4) (37)

4&k2
(3

2 2) + 8@k3
~4

d x3 + d4x~ y 1#(@+‘@2P2Y2 + ~p~) (38)

.

.-
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r-[~=2b(2bE)yetit A2X2 - Y2 eo - % elx - %($x2 + e5p2y2) +

8iM$k3

1

—(e4x3 + e5xf3%2)
~6

(39)

1=~4x3 “+ f5x#)
~6

(It is to be noted in these equations that
first parentheses in each equation, namely

(w)

the expressions titfin the
those containing the coeffi-

cients- A, B, C, . . ., are expressions for downwash and hence possess
the dimensions of velocity.)

.
KEMIRKSAND DZKXEX310N

The local force (positive downward) or pressure difference @
between the upper and lower surface at any point (xjy) on the wing is,
in terms of nondimensional coordinates,

4 =-2P
(
&_+g

)

or, for the oscillating case under consideration

(41a)

(klb)

_ ———. .————
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By substituting the potentials given by equations (35) to (kO) into “
these expressions, the pressure distributions can then be found for the
types of motions or downwash considered in this paper. It shouldbe
pointed out that the expressions for potentials developed herein for a

.

triangular wing can be wed to calculate local pressures oh certain
other plan fores, as indicated in reference 4, which can be formed from
the triangular wing by cutting the trailing edges in such a way that
they lie ahead of Mach lines emanating from all points of the trailing
edges.

The press~e distributions obtained in this way can then be integ-
rated to obtain the desired spanwise distributions of the Mft and
moment, as well as any integrated quantities which may be of interest
in the structural ana~sis of the given wing. For instance, in a modal
analysi$, for which the results of this paper would be particularly
useful, the aerodynamic forces usually enter in the form of integrals
over the wing of the product of local pressure difference and the local
distortion in a given mode, these integrals representing virtual work
done by the aerodynamic forces. The virtual-work integrals arising
from ahy or all of the potentials presented in the foregoing apal.ysis
can be easily reduced to involm- only integrations of functions of the

form xn(x2 - a2)*1/2 and can therefore be readily evaluated. It iS
recognized that, if the wing root is -consideredto be rigidly fixed,
some of the displacement terms considered herein will not satism
bounda&y conditions at the wing root for either plate or beam theory.
If, however, such terms are useful in appro-ting a lmown mode,shape,
these tyyes of disparities may be overlooked with the interpretation

.

that they imply hrge stresses at the wing root especially since with
t~ianm wings such stresses are known to exist.

Inasmch as the types of integrals required vary for different
methods of aeroelastic anal’ysis(depending on whether the theory for a.
simple beam or that for a more refined representative structure is used)
and, inasmuch as the limits of these @tegrals depend on the exact plan
form, further manipulations employing equations.(41)to obtain some form
of force and moment coefficients are not’presented herein. However, in
order to illustrate the results obtainable by the method of this paper,
the spanwise ~iations of the unsteady-lift derivatives associated with
parabolic bending (obtained from @B) are shown in figure 3 for a
45° delta wing undergoing parabo~c bending at k =0.1 and at a Mach
nuniberof 1.2. These results may be used to give some indication of
the way coefficients based on the true downwash conditions for the
distorting wing compare with those obtainable by a simple strip-theory
analysis based on the coefficients associated with rigid-wing motions.
W order to effect such a comparison, the results of multiplying the
lift derivatives associated tith translation (obtained from fi) by the
ordinates of the assumed paraboMc mode shape (y2) are also shown in
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figure 3 for the same &lue of k and M. The main features to note
in this comparison are the differences in magnitude of lift at the wing
root and at the points of maximum lift. These differences are, of.
course, associated with induced effects due to ben~ng. In order to
determine the nature of ‘theseinduced effects on calculated flutter
speeds, further investigations are reqpirsd.

Langley Aeronautical h’boratory,
National A@i.som Committee for Aeronautics,

“ Langley Field, Vs., June k, 1953.

..

—..———. —. .——
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AI?Hmmx

COEFFIC- AEX$OCIAti WITH THE

This appendix contains definitions of
arisen in the foregoing analysis.

VELocrryFwt!ENTm

the coefficients that have

The coefficients denoted by Ai, xi, Bi, ~, . . . in equations (16)
to (21) of the body of this paper are defined by systems of linear alge-
braic equations which arise in the process employed for solving the
integral equations involved. These algebraic eqyations are listed sub-
sequently; however, they in turn involve-a set of cunibersomecoefficients

that are denoted by W~,m and ~~ ~. These
)

follows:

Application of the transformations (see

px(e - a)
I?=

1 - $%72

X(l -
~=

p2~ )

1- p%z

e=:

coefficients are defined as

appendix of ref. 4)

to the inte~l equations (and certain derivatives
the distribution functions (see eqs. (13) and (14)

the definitions

thereof) which define
for @A) results in
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.

.

(n + 4)N Icosh T SiIlh2T dT

p are either both even or both odd, W~,m and ~~,m

symmet~. )

(Unless m and

vanish OWiIlgto

With F’ and E’ denoting complete elliptic in>egrals of the
.

first and

values of

Bi, ~, .

second ldnds, respectively, with modulus ~1 - Poz, explicit
WE m and ~n m reqtired to write the equations for Ai, xi,

> J
. . are

%,0
=E’

— __. — —.——---–——
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@
1

,0 =
[ )( )]5P02 - 3P04 F ‘ + 2- 10P02 + 6P04 E ‘

2(1 - P02)2

- po2J2~po2F’ -@+ p02)E~

w~,o = @2

(
1

W;,l = 1 [( 1- %2+ P04)F’ + (2 - 2%2 + 2P04)E’

(
1- po2)2

%,2
P#

=—W2
2p

4 2,0

Wg,a = 1
[

)]5P04-3P02)F’ +(6- 10P02+2P04E’

(
1- P02)2

Xl,o
1= K27P02- 31P04 + 12po6>’ +(6 - %2+

6@ - po2)3

>]65P04- 24P0 ‘

W2 = P2
3,0 K )(9P02 - P04 F’ - 3 + 7P02 -

1
2P04)E‘

(
1- Po )

23

K 6- 9P() 4- 6p06)E~4- 2p02)F‘ + 4
%1= 2@ -1P02), 3P0 ( - 5P(32+ 15P0

.
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.

.

-’

KW3 = ~2 .po*-
3,1 h]9P04)F ‘ - (2 - 7PO* - 3P04 ‘

(
1- PO*)3

PO*
W*%* = q 3,0

W;,* = 1

K
4- 3p02)F‘ + (6 - l~Po* + >po4 - 4P06)E]

3
*PO6+ 9P0

(
1 - PO*

)

W;,3 = 1
[(
- Upo* - 31P04+ ~Po~’ + (24 - 65P02+

(1- P02)3

55P0
1

4- 6P06>’

~,o= 1 K56Po* - 92P04+ 72P06 - 20P08)F‘ + (8 - U7PO* +

8(1 - po~k

m2P04 - 149P0
1

6 + kOPo8)E‘

. 3P*
Wf,o = K17PO* - 2P04 + P. 6)F’-(4+ 18p02-8p04+2p06 ~

>]
. *(l - PO*)4

—. .—.— .-— __
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w~,o = 3P4

K
)]8,02 + 8,04)F’ - @+ 14,02+ ,04 Et

(1 -,.2)4

NACA TN 3009

6 + 4P08)F‘ + (4 - 5P02 +w~,l = 1
[(
- 2P02 + 24P04 - 14P0

2(1 - P02)4

38P04 - ~P~6 + 8P08)E~

w~,l = 3F
(
P02 - 18P0

2)4[ 1
4+ %%’ -(2 - 10P02 - ‘OP04 + @o%’

(1 - PO

P02
lJ~,2=—

Wf,o
12f34

wf,2 = 3
[(
- 2p02 - 10PO4 - Klpo6+ 2P0

8}’ +(4 - 1%2 +
2(1 - P02)4

2P04 - 13P0
1

6 + 4P09E ‘

w~,2 =
3$2

E
4 P02 - 2P04+ 17Po~F’ - (2 - 8P02+ 18P0

1
4 + 4P09E ‘

(
1- )Pop
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w~,3 = 1
—E(

12P02- 42P04+ 72P06+ 6P08)F’+ (24 - 87P02+

. (
1- P02)4

IJ4P04 - l~po
1

6+ 12P08)E’

.

.

w~,4 =

wf,4 =

$5,0 =

W;,. =

.

Po4
W4

24P
8 4,0

3

[
P04 - 2P06 + 17P0

4
8)F1 - (2p02 - 8p04 + 18P06 +

(
2fJ21 - P02)

1
4P08)E‘

3
[
56P08- 92P06+72P04- ~Po2)F’ +(M -149P02+

(1 - P02)4

2Q2po4 - 117p. 16+ 8p08)E’

1

[
400P02-

40(1 - P02)5

(40 - 859P02+ 1910P04

-1

833P04 + 9946.6- 553P08 + lalpo )
loF1 +

- ~5Po 6 + 1136P0
1

8- 240P010)E‘

P2
[
l15P/’- 2P()4 + 19P06- 4p08)F’- (XI + 151P02-

2(1 - P02)5

74P04+ 39P0 1
6- ~08)EI

—— ..— —
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l’+
Zk

5,0 =
K 4- PO’>’ -(5+ ‘08p02 + 17P04- 2po’)Ej

Q -PP02)5 %2+ 7kpo

W;,l = 1 EXlpolo - 91P08 + 154P0‘ - m3po4 - 8p02)F ‘ +

8(1 - po2)5

(1’ - 16p02 + 323P04 - 342Po’ + 187P08 -
1

40P010)E‘

W;,l = 3P2
K

4P02 - 131P04 + 2p.‘ - 3P08)F‘ - (8 - 53P02 -

2(1 - po2)5

108P04 + 31p.
1

6- 6P08)EI-

W;,l =
3B4

~P/ - 74P0
1

4- 55P0’)F”- (2 - 17P02- lo8P04- 5P0’)E’

(1- Po )
25 /

1
w;,2 =

[

8p010 - 35P()8 + lu?po ‘ + 49P04- 6p02)l?’
25

2(1 - PO )

+

(M - 47p02 - 22P04- 127p.‘ + 72P0
1

8- 16polo)E ‘

W:,2 = 3B2
[

4 + 131po‘ - 4P08)F‘ - (6 - 31P02+3P02 - 2P0

(1 - P02)5

108P04+ 53P0 1
6- 8P08)E’
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W;,3 = ‘ 3
K
6polo- 49P08- ~po6 + 35Po4- 8p02)F‘ +

2(1 - Poy

( 2 + lqpo4 + 22P06+ 47P016 - 72P0 1
8- 12P010)E‘

W;,3 = 3P2

K
4P02 - 19P04 + 2P06 - lJ-5P()

)

8)F’ -(8 - 39P02+

(
1- P()

25

74P04- 151P06- mP())]
8E1

.

wg,4= ~ 1 E3P04 - 2P06+ 131P()8- 4pol-o)F‘ - (6P02 -

25
2P2(1 - PO )

31P04 -tI-08P06+ 53P0
1

8.. @olO)E 1

W$,4 = 3

K
8PO1O+ 203P08 - 154PJ + 91P04 - 20P02)F’ +

(1- Poy

(
40 - 187P02+ 342P04 - 323P06+ 16P08 -

1
16Po~)E ‘

W;,5 = t W5
24P8 5)1

——. .— ——— —— .— —- —— .—
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2

%5
- ‘o W5

2P
4 593

6 - 833P08+ @OPo@5 = - 3
[(
- Hpoz - 553P04+ 994P0 )

10 F’ +

(
25

l-PO)

(
240 - l136P#+ 2115P04- 191OPO6+ 859PJ3-

1
kOPolO)E‘

ijjgo= - 1 (P02F ‘ - po?E ‘)

2(1 - P02)

EJ2 (z PO?F’
l-f%

E ‘)

q,o=- 1 [ 3P02 - Po )]
4>,- (4p02 - 2p04 E’

6(I - po2)2

w? 2
1,0 = -W2,0

–3Wl,l = - f32
K

P02 -
1

3P04)F‘ - (2 - 4P02)E‘

(1-
P02)2

.

-0 1

[
12PJ’ - 7P04 + 3bo~F ‘ - @9P02 -

1
4 + 6P06)E‘ -W2,0 = - 17P()

24(1 - P02)3

-. .—— —. .— ——
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.

r

.

.

~
2

2,0 = -
K )]7P02+ P04)F‘ - (2 + 7P02 - P04E ‘

2(1 - poy
f

+
~4

2,0 = - K
s 5P02

(
1 - P02) ‘

>]+ 3P04)F’- (1+ 7..21

p=- P2 KPf - 9P04)F ‘ - (2 - 7%2 - )]3P04 E ‘
>

(
1 - P02)3

iig 2=-
Y

1 K3P04 + 5P06)F‘ - (7P04+ P06E ‘j

(
24~21- 23

Po )

1 KP04 + 7P06)F‘ + (Poz - I7P04 - 2P06)E‘

2(1 - P02)3

P2 k3P02 - 7Po&+ 12P06)F‘ -
1

(6 - 17P02 + 19P04)E‘

( )
3

1- P02

F3,0 = -

126P04 + 91P06 - 24P0 >]
g,

1 K60P02- hkPo4+ MP06 - 12P08)F‘ - @7P02 -

120(1 - P02)4

~,o = - fi~3P02 + 14P04 + po6)F’ - (6 + 46P02 - 6P04 + 2P06)E~
- P#

..-—
—
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i#3,0 =-w$o
)

ml 1
3,1 = K

17P04 - 2P06 + P()8)@ - (kpo2 + 18p04 - 8p06 + 2p08 EI
)]

8(1 - P02)4

F;,l = - fJ2

K
2p02 -

1
~pok - 6p06)F’ -(4 - 21p02 - ~po4+ 3po~E’

2@ - P02)4

g,l = -
~4

K
P02 - 34P04 -

1
15Po~F1 - @ - 12P02 - 38p04)E1

(
1. P02)4

3,2=- ‘ K15P04+ 34P06- Po8>1- (38P04 + ~%6 - 2%)8 E’24 )]
lmpz(l - po )

~ =-
~
6P04 + ~po 6- 2p08)F‘ + (3P02 -1

3,2 34P04 -
24

6(1 - P. )

1
21P06 + 4P08)E ‘

-4W3,2 = -$2
J

—1 ’04$0W3,3 = ~ ‘

K 1

“3=2(’-’f’094 ‘$+““06+33%8)-6“02-6p04+
b]46P06+ 6P08 ‘

_——
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.

3
2

‘[
12P02 - 44POJ++ 44P06- 60P08)F‘ - (24 - 91P02 +w,3=-

(1 - P02)4

W6p04 - 107PO>]
6,

The necessary equations for Ai, Ii, Bi, ~i, . . . are, in terms of
w: ~ and W~n~, as follows:

> >

For @A:

Ao~o +Alf3~2,2 = 1
J 1

%%0 + W%,2 ‘ oJ

A2%,0 1
+ A3~V3,2 = 1

?

A2W:,0+ A#W;,2 = O
J

‘7$,0 + ‘8~w5,2 + ~$w5,4 = 1

1

.—— ———. -- ..——— —
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%lti,O + @t,2 + 129+4,4 ‘ %%,0 + ‘l~@2,2 J

for $B:

‘2$3,0 + B3~~3,2 = o

1

B W22 3,0 + B3KJ%~j2
J

= 2#

‘4ti,o + ~P~4,2 + B6134wf/,4= O
1

%4 + B#w~,4 = oB4w;,o + B5~ 4,2
J

NACA TN 3009

.

.

— —. .
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.
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‘54,0 ‘D6~%,2+D7P~,4 ‘o
J

EoW~,l = 1

%%,1 = 1

--l

-.. — ——— .———
? .. . . .—_-
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WcA TN 3009

}

~o%,o +@%g,2 =Fo%,o

F 1#
o 2,0 + q% F W=2,2 = o 0,0

- — — ___
—— — —
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.

.

The coefficients ai’, ai”, hi’, hi”, . . . used in the expres-

sions for the ~locity~otential (eqs. (23) to (28)) are defined in
term of Ai, Ai, Bi, Bi, . . . as follows:

‘%’ ‘b

al’ = Al

a2’ =Ao-A2

a3 ‘
=Al_ A3

%“ ‘o

al” = O

a2*1= O

a3f1= ()

%) A4 l–,g4’=F-A2+z a4tt=-~~

‘1 %
‘95’ =~-A3+7 a5° = -*11

A6
a6’ = ~ a61f= -;K2

~ A2 A4 A7

a7’=~-~+y-~
a7° = - ~& - ‘3)

Al ‘3 ~ ‘8
a8’=—-— +-— a8° = ( )-+ X1-E4

6226

A6 Ag

-% ’’F-r
%,, . . ~12 - ~)

.- ..——— — — . . — —— —-—— —
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%’ ‘%

% ‘ ‘El
b2 ‘ =~-B2

b3 ‘ =B1-B3

% B4
b4’==-B2+z

B6
b6’ = ~

ho” = ()

bl” = O

b2° = O

b3° = O

CQ ‘ = co

c1 ‘ =co-c~

~2 ‘ = -C2

co C3
C3‘ ‘-2- -cl+~

C4
C4‘ =-c2+~

_co Cl+q ~
c5’6-~2-6

C5,,= - ~Eo - ~2)

C2 C4 C6Cf51=—-+-— —

22 6

C7
C7’ =-7

$’= - ~~ - @

%“ =o
cl” = o

C2° = o

C3° = -*EO

1~
C4’’=-51

C7° lE‘~ 4

— —
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.

do’
dl‘

d2‘

d3‘

%’

‘%’

%’

%’

‘Q)

‘%-%
= +)2

DO D3
=—- D1+T

2

D4
=-D2+F

.% %+ 5-%-—
6226

D2 D4 D6
=- —+ —-—

22 6

‘7=-—
6

%’ =EO

‘1‘ =EO-E1

E. E2
e2’=~-E1+F

%!-E%’= 2 3

%“ =o
dl” = o

d2° = O

d6° = - $@, - 53)

%“=0
el” = O

—
e2’’=-$Eo

ek” = - :(EO- E,)

‘5” = - *R - ~3)

——. —.—. — ——-—— — .
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fo ‘ = F.

fl‘ =Fo-Fl

FO
f2’=z-Fl+F&

F3
f5’ .=

FO F1 F2 F4
f4’. T- F+__x

2

fo” = ()

fl” = o

fz” = - ; To

fl” = - 6(F0 - F2)

—

,
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